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SUMMARY

A two-fluid model of gas–solid particle flows that is valid for a wide range of the solid-phase volume
concentration (dilute to dense) is presented. The governing equations of the fluid phase are obtained by
volume averaging the Navier–Stokes equations for an incompressible fluid. The solid-phase macroscopic
equations are derived using an approach that is based on the kinetic theory of dense gases. This approach
accounts for particle–particle collisions. The model is implemented in a control-volume finite element
method for simulations of the flows of interest in two-dimensional, planar or axisymmetric, domains. The
chosen mathematical model and the proposed numerical method are applied to three test problems and
one demonstration problem. © 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In dilute gas–solid particle flows, the motion of the particles is mainly determined by the
aerodynamic forces that they experience, and the influence of particle–particle collisions may
be assumed to be relatively negligible. In contrast, the particle motion in dense gas–solid
particle flows is primarily controlled by particle–particle collisions, and the aerodynamic
forces on the particles have a relatively negligible influence on their trajectories. Discussions of
dilute gas–solid particle flows, including quantitative qualification criteria, are available in the
works of Crowe [1,2] and Ishii et al. [3]. The modelling of dense gas–solid particle flows, such
as granular flows and fluidized bed flows, have been discussed by Campbell [4], Savage [5] and
Gidaspow [6]. Discussions of gas–solid particle flows and related modelling issues, are also
available in the works of Jackson [7], Soo [8], Marble [9], Whitaker [10], Ishii [11], Slattery [12],
Bouré and Delhaye [13], Drew and Lahey [14], Sirignano [15], Walton [16], Pita and
Sundaresan [17,18], and Yasuna et al. [19].

Most of the available models of gas–solid particles flows are applicable to either the dilute
or the dense regimes of the solid-phase volume concentration. The objectives of this paper are
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to present a two-fluid model of gas–solid particle flows that is applicable to a wide range of
the solid-phase volume concentration (dilute to dense), concisely describe the implementation
of this model in a control-volume-based finite element method (CVFEM), and demonstrate the
capabilities of the model by applying it to some test and demonstration problems. The
two-fluid model presented in this paper is a simplified version of a model proposed by Savage
and co-workers [5].

The most detailed model for gas–solid particle flows is the so-called complete local
description or exact formulation [13,14,20,21]. This approach deals with the dynamics of each
phase and the interface on the basis of first principles. In each phase, the appropriate
governing equations are solved, and kinematic and dynamic balance equations are imposed at
the interface. Such a complete local description exactly models the flow of interest. However,
simulations that are based on such complete local descriptions place enormous demands on
computational resources [2]. Therefore, some simplifications are essential to obtain models that
are tenable for practical simulations of gas–solid particle flows.

Practical models of gas–solid particle flows are obtained by introducing the notion of
volume concentration in the context of superimposed continua: each phase is treated as a
continuum, simultaneously occupying the same region in space. Rigorous derivations of such
models are based on averaging procedures. The early works in averaging theories, such as
those of Anderson and Jackson [22], Murray [23], Panton [24], and Buyevich [25], are related
to applications involving gas–solid particle flows. The works of Slattery [26] and Whitaker [27]
pertain to flows in porous media and are based on the techniques of volume averaging.
Averaging formulations for more general multiphase systems can be found in the works of
Ishii [11], Bouré and Delhaye [13], Drew, Drew and Lahey [14], [28], Crapiste et al. [29], and
Jiang et al. [30].

Computer simulations of dilute gas–solid flows can be done by using either a Lagrangian or
Eulerian description for the solid phase. A Eulerian description, typically based on a
volume-averaged continuum formulation, is used to model the fluid phase. When the Lagran-
gian description of the solid phase is used, the effects of the solid phase appear as implied
sources of mass, momentum, and energy in the continuum description of the fluid phase. A
popular scheme using the Lagrangian description of the solid phase and the implied-source
concept is the PSI-CELL model first proposed by Crowe et al. [31]. Numerical models of dilute
gas–solid particle flows that are based on Eulerian descriptions of both the particles and the
fluid employ volume-averaged formulations to model both phases. Such models are often
referred to as two-fluid models, and examples of their use can be found in the works of
DiGiacinto et al. [32], Durst et al. [33], Carver [34], Harlow and Amsden [35], and Spalding
[36].

Eulerian–Lagrangian descriptions of dilute gas–solid particle flows involve the solution of
the equations of motion of a large number of particles. In such formulations, the handling of
boundary conditions, though quite demanding computationally, is straightforward once the
wall–particle collision properties are known. They can also handle polydispersed particle size
distribution [33] more efficiently than the Eulerian–Eulerian formulations. However, the
volume concentration of the solid particles does not appear directly in the Eulerian–Lagran-
gian formulations. Therefore, special treatments are essential [37] to calculate this variable,
which appears in the Eulerian description of the fluid phase, and such treatments can adversely
affect the effectiveness of the overall solution procedure at high solid-phase volume concentra-
tions. It has also been observed that the Eulerian–Eulerian formulation often converges more
easily at high loading than the Eulerian–Lagrangian model, as has been discussed by Durst et
al. [33]. Furthermore, particle–particle collisions are difficult to take into account in the
Eulerian–Lagrangian formulation.
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As the solid–particle volume concentration increases, in addition to the interaction between
the fluid and the particles, particle–particle interactions must be taken into account. Savage
and co-workers (see Reference [5]) have used averaging techniques and concepts similar to
those employed in the kinetic theory of dense gases [38] to propose macroscopic mathematical
models of dry granular materials (collection of discrete solid particles with no interstitial fluid).
There have also been efforts to modify the dry granular flow models to include the effects of
the interstitial fluid. Sinclair and Jackson [39] have used such a modification to analyze fully
developed gas–solid particle flow in a pipe. In their model, the effects of the fluid are modelled
through a drag force appearing in the solid- and fluid-phase momentum equations, and the
solid-phase constitutive equations are based on the dry granular flow kinetic theory of Lun et
al. [40]. A similar model has been developed by Ding and Gidaspow [41] and applied to
fluidized beds. Lun and Savage [5,42] have rigorously developed a kinetic theory for gas–solid
particle mixtures. Their model is also valid for a wide range of the solid-phase volume
concentration. A simplified version of their model is used in this paper and described in the
next section.

The granular-temperature models and numerical simulations of Johnson and Jackson [43],
Nott and Brady [44], and Sinclair and Jackson [39] are examples of Eulerian–Eulerian
descriptions of dense gas–solid particle flows. These numerical simulations are based on
one-dimensional formulations. In the work of Ding and Gidaspow [41], multidimensional
numerical simulations of high-concentration gas–solid particle flows have been presented.
Their numerical solution method uses a staggered-grid finite volume formulation based on the
ICE algorithm developed by Harlow and Amsden [35].

Most of the aforementioned numerical simulations of gas–solid particle flows are based on
finite difference methods (FDMs) or finite volume methods (FVMs) that use orthogonal
line-by-line staggered-grid arrangements for the velocity components and pressure [45]. These
methods are best suited for the modelling of such flows in regular-shaped calculation domains.
General orthogonal and non-orthogonal boundary-fitted grids can be used to extend their
applicability to irregular geometries. However, methods based on finite element discretizations
are better suited for the solution of fluid flow problems in complex irregular domains.
Recently, a co-located, equal-order CVFEM formulated for the solution of a two-fluid model
of dilute gas–solid particle flows has been proposed by Masson and Baliga [46–48]. The
numerical method proposed in this paper is a CVFEM that is designed to solve two-fluid
models of gas–solid particle flows over a wide range of the solid-phase volume concentration
in complex two-dimensional planar and axisymmetric domains.

2. MATHEMATICAL MODEL

As was noted in the previous section, several derivations of the governing and constitutive
equations of dilute and dense gas-solid particle flows are available in the literature. Lun and
Savage [5,42] have proposed perhaps the first model of fluid–solid particle flows that is
appropriate for a wide range of the volume concentration of the solid phase, from the dilute
to the dense regimes. This model uses the so-called granular-temperature concept [5,40].

In the model of Lun and Savage [5,42], the motion of the particles in a gas–solid particle
flow are assumed to be analogous to the random motion of the molecules of a gas. Therefore,
a macroscopic description of the solid-particle phase can be obtained following procedures
akin to those employed in the kinetic theory of dense gases [38]. This model is based on the
prescription of a velocity distribution function that is governed by the Boltzmann equation, in

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 1441–1479 (1998)



C. MASSON AND B.R. BALIGA1444

which the external forces applied to the particles and a collisional term appear. The collisional
term models the direct particle–particle interactions, using the assumption of binary encoun-
ters of inelastic hard spheres, and the contribution of collisions between solid particles and
fluid molecules, based on the Fokker–Planck or soft collisional term [5,38,42]. Using an
ensemble averaging procedure, the governing equations of the solid-particle phase are obtained
along with their accompanying constitutive relations. These constitutive relations involve the
granular temperature [5,40] which is a measure of the fluctuating kinetic energy of the solid
particles. The motion of the Newtonian fluid phase is governed by the Navier–Stokes
equations, which must be satisfied at each point of the continuous phase: appropriate
boundary conditions at the domain boundaries and the interface between the particles and the
fluid phase complete the mathematical description. However, as was mentioned earlier, for a
large number of particles this exact topology is far too complex to allow practical simulations
based on such a complete local description of the fluid-phase governing equations. To simplify
the description, point variables which vary rapidly on the scale of the particle spacing are
volume averaged [22] over regions that are large compared with this spacing, but small
compared with the domain of interest. The resulting model [5,42] describes the fluid and solid
phases as two interpenetrating continua.

A simplified version of the model of Lun and Savage [5,42] is used in this paper. The
interested reader is referred to Reference [49] for a detailed derivation of the governing
equations and the constitutive relations. This mathematical model is based on the following
assumptions: the solid phase is composed of hard, spherical, smooth, and elastic or slightly
inelastic particles of uniform diameter, d ; particle–particle interactions through sliding contact,
which can occur in situations close to maximum packing, are considered negligible or not
allowed; the particles do not coalesce or break up; the mass density of the particles, r s, is much
larger than the fluid-phase mass density, r f; rotation of the particles is neglected; the fluid is
Newtonian and incompressible; and the flow of the fluid phase is governed by the Navier–
Stokes equations, prior to the aforementioned volume-averaging procedure. Furthermore, the
model does not allow phase change and chemical reactions, and attention in the paper is
limited to two-dimensional, planar or axisymmetric flows. Note that this simplified model is
unable to handle regions where there are no solid particles, and it is unsuitable for problems
in which there is a smooth transition to the packed-bed state.

2.1. Go6erning equations

The proposed mathematical model consists of a set of seven differential equations: a
continuity equation and two momentum equations for each of the two phases, and a
fluctuating kinetic energy equation for the solid phase. The seven dependent variables are u f,
6 f, p f, u s, 6 s, a and T. The superscripts f and s refer to the gas (fluid) and particulate (solid
particle) phases, respectively. The volume concentration of the solid phase is denoted by a. The
volume concentration of the fluid phase, e, is related to a by a+e=1. T is the granular
temperature [5,42].

With respect to the cylindrical co-ordinate system (r, u, z), two-dimensional axisymmetric
gas–solid particle flows can be represented by

(

(t
(brf)+

(

(z
(bruf)+

1
r
(

(r
(rbr6f)=

(

(z
�
Ge

(f

(z
�

+
1
r
(

(r
�

rGe

(f

(r
�

+Sf. (1)

The appropriate governing equations can be obtained from Equation (1) by defining the
dependent variable f, the volume concentration b, the effective diffusion coefficient Ge, the
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mass density r, the z-component of velocity u, the r-component of velocity 6, and the
volumetric source term Sf, according to Table I, where
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The terms SGz and SGr will be denoted as the diffusion-source terms, and Gb that appears in the
expressions for these terms is a bulk diffusion coefficient: the definitions of Gb for the
dependent variables of interest are given in Table I. Expressions for the other coefficients and
parameters in Equations (1)–(8) are given in the following subsection.

Equations (1)–(8) can be used to model two-dimensional problems formulated in the
cylindrical and Cartesian co-ordinate systems. To facilitate this general approach to the
problem, the terms directly related to the use of the cylindrical co-ordinate system are
regrouped in the source term Scyl. This regroupment has been carried out only to emphasize
the difference between the cylindrical and Cartesian formulations. In the Cartesian (x, y)
formulation, the following specializations are involved: Scyl=0; in all derivatives x
z and
y
r ; and, then, r is set equal to unity. The source terms SDz and SDr are the mutual z- and
r-direction drag forces per unit volume of the mixture, respectively, exerted by the fluid and

Table I. Specific forms of the general equation
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solid phases on one another. Therefore, these source terms will be referred to as the momentum
coupling terms. Sa represents the rate of transport of solid-phase fluctuating kinetic energy per
unit volume because of concentration gradients, and Wp is the rate of work done per unit
volume by the solid-phase pressure.

2.2. Constituti6e equations

2.2.1. Solid phase.
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In these equations, gc and gD are the collisional and drag dissipation terms, respectively; gB is
a term that describes energy transfer between the fluctuating and the mean flows; Fs is a
viscous dissipation term that appears as a volumetric source in the granular-temperature
equation; Re s is the particle Reynolds number:
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g0 is an equilibrium radial distribution function [38]; e is the particle coefficient of restitution;
and aMX is the solid-phase concentration at maximum packing.

2.2.2. Fluid phase.

m e
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In the volume-average description of the fluid phase, terms appear that are analogous to the
subgrid-scale Reynolds stress tensor encountered in large eddy simulations (LES) of turbulent
flows [50].The mF

f term and its expression are related to the approximation of this subgrid-scale
stress tensor using a model akin to the Smagorinsky model [50,51] developed in the context of
LES: Cs lies between 0.1 (for coarse grid) and 0.2 (for fine grid); D is a linear measure of the
grid size.

3. NUMERICAL METHOD

The proposed numerical method is a CVFEM based on a primitive-variables, co-located,
equal-order formulation: it works directly with the velocity components, pressure and granular
temperature; these dependent variables are stored at the same nodes in the finite element mesh
and are interpolated over the same elements. This CVFEM is constructed by adapting and
extending ideas from earlier CVFEMs for single-phase incompressible fluid flows proposed by
Baliga and Patankar [52], Prakash and Patankar [53], Schneider and Raw [54,55], Masson et
al. [56], and Saabas and Baliga [57].

A detailed description of a CVFEM for the simulation of dilute-concentration gas–solid
particle flows has been published recently [48]. This CVFEM [48] is closely related to the
numerical method used in this paper. Furthermore, details of the CVFEM for single-phase
flows are available in Reference [56]. Therefore, for sake of conciseness, only a very brief
description of the method, with appropriate emphasis on the aspects relevant to the successful
simulation of dense gas–solid particle flows, will be presented in this section.

3.1. Domain discretization

A longitudinal cross-section of the axisymmetric domain of interest is first divided into
three-node triangular elements. Then the centroids of the elements are joined to the midpoints
of the corresponding sides. This creates polygonal control volumes around each node in the
finite element mesh. The longitudinal cross-section of a sample domain discretization is shown
in Figure 1: the solid lines denote the domain and element boundaries; the dashed lines
represent the control-volume faces; and the shaded areas show the control volumes associated
with one internal node and one boundary node.

The discretization of the longitudinal cross-section is rotated through 2p radians about the
axis of symmetry. The result is a discretization of the axisymmetric calculation domain into
torus elements of triangular cross-section, and torus control volumes of polygonal cross-sec-
tion. In the rest of the paper, the torus elements and torus control volumes will be referred to
simply as triangular (three-node) elements and polygonal control volumes, respectively.

3.2. Integral conser6ation equation

Consider a typical node i in the calculation domain: it could be an internal node, such as the
one shown in Figure 2(a), or a boundary node, similar to the one shown in Figure 2(b). An
integral formulation corresponding to Equation (1) can be obtained by applying the appropri-
ate conservation principle for the dependent variable f to a suitably chosen control volume.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 1441–1479 (1998)
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Figure 1. Discretization of the longitudinal cross-section of a calculation domain.

The resulting integral conservation equation, when applied to the polygonal control volume
surrounding node i in Figure 2, can be written as�&

a

o

Jb · n� 2pr ds+
&

o
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Sf dV+
&
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+ [similar contributions from other elements surrounding node i ]

+ [boundary contributions, if applicable]=0, (23)

where n� is a unit vector normal to the differential length element, ds, and pointing outward
with respect to the control volume. Jb is the combined convection–diffusion flux of f :

Jb =Jb D+bJb C, (24)

Jb D= −Ge9f, (25)

Jb C=rVb mf. (26)

Figure 2. Typical control volumes surrounding (a) an internal node; and (b) a boundary node.
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Figure 3. Typical triangular element: (a) global and local co-ordinate systems; (b) unit normals.

With reference to Equation (26), the superscript m is attached to the velocity vector in order
to emphasize its connection to the mass flux: this velocity is interpolated in a special way, as
is discussed in the next section. The form of Equation (23) emphasizes that it can be assembled
by using an element-by-element procedure.

3.3. Interpolation functions

The derivation of algebraic approximations to the integral conservation equations requires
the specification of element-based interpolation functions for the dependent variable f, the
velocity components u and 6, diffusion coefficients Ge and Gb, source term Sf, mass density r,
and volume concentration b. As was stated earlier, specific forms of f, u, 6, Ge, Gb, r and b

are given in Table I.
The interpolation functions are specific to each element. For convenience in the formulation

of these functions and subsequent derivations, a local (x, y) co-ordinate system is defined in
each element, such that the origin is at the centroid of the triangular element, the x-axis is in
the direction of z, and the y-axis is in the direction of r, as shown in Figure 3(a).

3.3.1. Diffusion coefficients, density and sources. The diffusion coefficients Ge and Gb are
stored at the vertices of the triangular elements. G( e and G( b are assumed to prevail over the
corresponding element. G( e and G( b are computed by assuming a linear variation of Ge and Gb,
respectively:

G( e=
1
3

(Ge1+Ge2+Ge3), (27)

G( b=
1
3

(Gb1+Gb2+Gb3), (28)

where Ge1, Ge2 and Ge3 are the values of Ge stored at the vertices 1, 2 and 3, defined in Figure
3. Similar notation is used for Gb. This treatment is convenient in this formulation because
most of the diffusion coefficients, namely ma

f , mb
f , m e

s, mb
s , kT

s and ka
s , are functions of the

dependent variables only and not of their derivatives. In cases where the diffusion coefficient
is expressed as a function of space derivatives of the dependent variables, such as for mF

f ,
volume-average space derivatives associated with each control volume are used first to evaluate
the corresponding nodal values. The element contribution of Scyl is evaluated assuming that
the values at the vertices prevail over the corresponding portions of the control volumes within
that element.
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In each triangular element, the centroidal value of r is assumed to prevail over the
corresponding element. It should be noted, however, that in this particular work, the density
of the solid and fluid materials, r s and r f, respectively, are assumed to remain constant
throughout the calculation domain.

The source term Sf is linearized, if needed, and expressed in the form [45]:

Sf=SC+SPf. (29)

In each triangular element, the values of SC and SP are stored at the vertices, and are assumed
to prevail over the corresponding portions of the control volumes within that element. Thus
within each element, three sets of SC and SP are stored: SC1, SC2, SC3, SP1, SP2 and SP3.

3.3.2. Mass flow rates. In the calculation of mass flow rates across the control-volume faces,
the velocity is denoted by

Vb m=umi� +6mjb . (30)

When mass flow rates of the solid phase are considered, um=u s and 6m=6 s, and um and 6m

are interpolated linearly in each element. However, when the mass flow rates of the fluid phase
are considered, a special treatment, borrowed from the works of Prakash and Patankar [53],
Masson et al. [56], and Saabas and Baliga [57] is used to prevent the occurrence of spurious
pressure oscillations in the proposed co-located equal-order CVFEM. The development of this
special interpolation is based on the discretized fluid-phase momentum conservation equations.
Therefore, it will be presented later in this section.

3.3.3. f in diffusion terms. In the derivation of algebraic approximations to surface integrals
of diffusion fluxes (Equations (23) and (25)), the dependent variable f is interpolated linearly
in each element:

f=Ax+By+C. (31)

An equivalent, and perhaps more elegant, development of this linear interpolation on
triangular elements could be performed using barycentric or area co-ordinates, traditionally
employed in FEMs [58]. In order to be consistent with the derivations in the following sections,
however, the above-stated development is preferred in this case. It should also be noted that
with such linear interpolation functions, Delaunay triangulation is required to ensure that
algebraic approximations of the diffusion transport terms contribute positively to the coeffi-
cients in the discretized equations. Barth [59] has presented a formal proof of this statement for
two-dimensional planar problems: this proof applies when the diffusion coefficient is a
constant.

3.3.4. f in con6ection terms. In the derivation of algebraic approximations to surface
integrals of the convective fluxes (Equations (23) and (26)), a mass-weighted skew upwind
scheme (MAW), originally introduced by Schneider and Raw [54], is used.

The MAW scheme defines a mass-weighted average of f at each of the three control
surfaces of a triangular element (Figure 3(b)), namely fr, fs, ft, in the following manner: let

m; r=
&

o

a

brVb m · n� r2pr ds ; m; s=
&

o

b

brVb m · n� s2pr ds ; m; t=
&

o

c

brVb m · n� t2pr ds,

(32)

where n� r, n� s and n� t are unit normals, as shown in Figure 3(b).
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Ã
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Ä

f +f t+ (1− f +)f1
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, 0
�

, 1
n
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−
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, 0
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, 1
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, (33)
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Ã

Ã

Á

Ä

f +f t+ (1− f +)f3
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�m; t
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, 0
�

, 1
n

if m; s\0
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−
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, 0
�

, 1
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if m; sB0
, (34)

ft=Í
Ã

Ã

Á

Ä

f +f r+ (1− f +)f1

f −f s+ (1− f −)f3

where f + =min
�

max
�

−
m; r

m; t

, 0
�

, 1
n

if m; t\0

where f − =min
�

max
�m; s

m; t

, 0
�

, 1
n

if m; tB0
. (35)

These mass-weighted averages of f are assumed to prevail over each control surface when the
surface integrals of the convective fluxes (Equations (23) and (26)) are evaluated. It should be
noted that in this scheme, to obtain expressions for fr, fs and ft in terms of f1, f2 and f3,
a 3×3 matrix of element-interpolation coefficients must be inverted. Further details are
available in the work of Masson [49].

3.3.5. Fluid-phase pressure p f and solid-phase pressure ps. Fluid-phase and solid-phase
pressures are interpolated linearly in each element. With respect to the local (x, y) co-ordinate
system shown in Figure 3(a):

p f=d fx+e fy+ f f, (36)

p s=d sx+e sy+ f s. (37)

It should be noted that p s is a function of the dependent variables T and a, as given in
Equation (12). The interpolation function given in Equation (37) is used to obtain convenient
and adequate approximations of the gradients of p s that appear in the solid-phase momentum
equations.

3.3.6. Volume concentrations. In most of the available finite volume methods for two-phase
flows, the function used to interpolate a is based on the upwind scheme [32–36]. In this work,
an adaptation of the MAW scheme described previously has been implemented.

The modified MAW scheme defines a material mass-weighted average of a at integration
points on each of the three control surfaces of a triangular element (Figure 3(b)), namely ar,
as, at, in a similar manner to that for the mass-weighted average of f. Equations (33)–(35) are
used with the following modifications: replace fr, fs and ft with ar, as and at, respectively;
replace f1, f2 and f3 with a1, a2 and a3, respectively; and m; r, m; s and m; t with M: r

s, M: s
s and M: t

s,
respectively, where

M: r
s=

&
o

a

r sVb s · n� r2pr ds ; M: s
s=

&
o

b

r sVb s · n� s2pr ds ; M: t
s=

&
o

c

r sVb s · n� t2pr ds. (38)
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e is calculated using e+a=1. These solid-material mass-weighted averages of a and e are
assumed to prevail over each control surface when the mass flow rates in the integral
continuity and momentum equations are evaluated.

3.4. Discretization equations

The discretization equations are obtained by first deriving algebraic approximations to the
element contributions and the boundary contributions, if applicable, and then assembling these
contributions appropriately. The algebraic approximations of the element and boundary
contributions are obtained by performing the surface and volume integrals of Equation (23)
analytically whenever possible, otherwise numerically.

3.4.1. Discretized u f and 6 f equations. The discretized momentum equations are derived and
assembled using element-by-element procedures. The resulting u f and 6 f discretization equa-
tions for the fluid phase at a node i can be cast in the forms�

aci
uf+KiVcv+

eir
fVcv

Dt
�

ui
f=%

nb

acnb
uf unb

f +buf+Ki ui
sVcv+

e i*r fVcv

Dt
u i

f*+eiVcv
�

−
(p f

(z
�

,

(39)�
aci
6f+KiVcv+

eir
fVcv

Dt
�
6 i

f=%
nb

acnb
6f 6nb

f +b 6f+Ki 6 i
sVcv+

e i*r fVcv

Dt
6 i

f*+eiVcv
�

−
(p f

(r
�

.

(40)

The bar over the pressure gradient denotes volume average associated with the control volume
Vcv. The superscript * means that the corresponding dependent variable is evaluated at the
previous time step.

3.4.2. Discretized us and 6 s equations. Using similar element-by-element procedures, the
resulting u s and 6 s discretization equations for the solid phase at a node i can be obtained and
cast in the forms�

aci
us+KiVcv+

air
sVcv

Dt
�

ui
s

=%
nb

acnb
usunb

s +bus+Vcv
�

−
(p s

(z
�

+Ki ui
fVcv+

a i*r sVcv

Dt
u i

s*+aiVcv
�

−
(p f

(z
�

, (41)

�
aci
6s+KiVcv+

air
sVcv

Dt
�
6 i

s

=%
nb

acnb
6s6nb

s +b 6s+Vcv
�

−
(p s

(r
�

+Ki 6 i
fVcv+

a i*r sVcv

Dt
6 i

s*+aiVcv
�

−
(p f

(r
�

. (42)

The contribution of the momentum interaction term is stated explicitly in these equations in
order to clearly represent the coupling between the momentum equations of the two phases.
This coupling will be used in the solution procedure presented later. Further manipulations of
the unsteady contributions are needed in the calculation of mass flow rates (see Equations
(45)–(46)); therefore, they are also stated explicitly in the previous equations. The solid-phase
pressure gradient terms that appear in Equations (41) and (42) are presented as separate terms
in the discretized equations for the sake of clarity, however, in the actual implementation, they
could be included in bus and b 6s.
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3.4.3. Discretized T equation. The solid-phase fluctuating kinetic energy is always positive.
To ensure a positive granular temperature, special attention is needed in the linearization of
the source terms. Patankar [45] has suggested the use of positive SC and negative SP to ensure
that the always-positive dependent variables are indeed positive during the solution process. In
order to satisfy Patankar’s recommendations, the following strategy is adopted in this work: (i)
contributions from the collisional and drag dissipation source terms are divided and multiplied
by T, and gc/T* and gD/T* are included in SP ; (ii) the energy transfer term gB, and the viscous
dissipation Fs, are included in SC ; and (iii) similarly, the solid-phase pressure work Wp, and the
diffusion induced by concentration gradients Sa (which could be either positive or negative) are
appropriately included either in SC or SP, depending on the sign of their respective element
contribution. Procedures for the discretization of the unsteady terms and the convection and
diffusion transport terms are similar to those described earlier. The resulting T discretization
equation at a node i can be cast in the general form

aci
TTi=%

nb

acnb
T Tnb+bT. (43)

3.4.4. Discretized equations for p f and a

3.4.4.1. Discretized p f equation. In each element, the velocity Vb m can be expressed in terms of
its components in the z- and r-directions, um and 6m, respectively, as shown in Equation (30).
Interpolation functions for um and 6m must first be prescribed in order to approximate the
fluid-phase mass flux integrals. First, the fluid-phase discretized momentum equations (39) and
(40) are rewritten in the following manner:

ui
f= û i

f+di
uf�−

(p f

(z
�

, 6 i
f= 6̂ i

f+di
6f�−

(p f

(r
�

, (44)

where

û i
f=

%nb acnb
uf unb

f +buf+Ki ui
sVcv+ (r fVcv/Dt)(e i*u i

f*−ei u i
f)

aci
uf+KiVcv

, di
uf=

eiVcv

aci
uf+KiVcv

,

(45)

6̂ i
f=

%nb acnb
6f 6nb

f +b 6f+Ki 6 i
sVcv+ (r fVcv/Dt)(e i*6 i

f*−ei 6 i
f)

aci
6f+KiVcv

, di
6f=

eiVcv

aci
6f+KiVcv

. (46)

For the evaluation of the fluid-phase mass fluxes on the faces a–o and o–c (Figure 3), the
fluid-phase velocity components are written as

um= û f+duf�−
(p f

(z
�

ele

, 6m= 6̂ f+d 6f
�

−
(p f

(r
�

ele

, (47)

where the pseudo-velocity components and the pressure-gradient coefficients, û f, 6̂ f, duf and d 6f,
are interpolated linearly from the corresponding values at the vertices of the element, and
(−(p f/(z)ele and (−(p f/(r)ele are the pressure gradients in the element being considered. This
procedure prevents pressure checkerboarding in FVMs [45] and in co-located CVFEMs [56,60]
for incompressible flows. Similar interpolation of the velocity components in the mass-flux
terms have been successfully used by Peric et al. [61], Rice and Schnipke [62], and Rhie and
Chow [63].
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In the derivation of algebraic approximations to integrals of fluid-phase mass flow rates, um

and 6m are interpolated in each element by the functions given in Equation (47). The same
functions are also used to approximate integrals that represent the mass flow rates in the
fluid-phase momentum equations. Using these interpolation functions, the contributions of
element 123 (Figure 3) to the fluid-phase mass conservation equation for the node 1 can be
calculated. Similarly, in general, addition of the contributions of the elements surrounding the
node i yields the complete discretized fluid-phase mass conservation equation.

When explicit algebraic expressions for the pressure gradient terms are substituted into the
interpolation functions for the mass-flux velocity components (Equation (47)), and then these
interpolation functions are used in the element contributions to the discretized fluid-phase
mass conservation equations, discretized equations for p f are obtained.

A compact representation of the discretized p f equation for a typical node i is

aci
pp i

f=%
nb

acnb
p pnb

f +bp. (48)

3.4.4.2. Discretized a equation. For the evaluation of the solid-phase mass fluxes on the faces
a–o and o–c (Figure 3), the mass-flux velocity components are written as

um=u s, 6m=6 s, (49)

and u s, 6 s are interpolated linearly from the corresponding values at the vertices of the element.
Addition of the contributions of the elements surrounding the point i yields the complete

discretized solid-phase mass conservation equation. These discretized equations are used to
compute the solid-phase concentration, a ; e is computed using a+e=1.

A compact representation of the discretized a equation for a typical node i is

aci
aai=%

nb

acnb
a anb+ba. (50)

3.4.4.3. Discussion. Carver [34] suggests subtraction of the fluid-phase continuity equation from
the solid-phase continuity equation to derive a discretization equation for a, and an addition
of these equations in the derivation of the discretization equation for p f, so as to explicitly
account for the coupling between the phases in the calculation of a and p f. This treatment is
only appropriate when local mass conservation is ensured over each control-volume for each
phase individually, as in the FVM used by Carver [34]. In the proposed co-located equal-order
CVFEM, for problems that involve inflows and outflows, a is prescribed at all nodes located
on the inflow boundaries, and p f is prescribed at one (or more) node(s) located at the outflow
boundaries: thus, for the control volumes surrounding the nodes on the inflow boundaries,
local mass conservation of the solid phase is not explicitly imposed; and local mass conserva-
tion of the fluid phase is not explicitly imposed for the control volumes associated with the
nodes on the outflow boundaries at which p f is prescribed. Thus, at nodes on the inflow and
outflow boundaries, the treatment proposed by Carver [34] could not be incorporated into the
proposed CVFEM. Furthermore, the construction of a fluid-phase pressure equation based on
the sum of the fluid- and solid-phase continuity equations can be realized only when the
solid-phase mass-flow related velocities are calculated using a treatment similar to the
fluid-phase mass-flow related velocities. The use of such solid-phase mass-flow related veloc-
ities has been implemented for the solution of dilute gas–solid particle flows [46–48], but this
approach leads to severe convergence problems at high solid-phase concentrations. Therefore,
in this work, the discretization equations for a are obtained from the continuity equation for
the solid phase, and the solid-phase mass-flow related velocities at the integration points are
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obtained from linear interpolation of the solid-phase nodal velocities; and only the fluid-phase
continuity equation is used to derive the discretization equations for p f. In each iteration,
therefore, the coupling between the two phases is not directly accounted for in the calculation
of a and p f, but this did not lead to any major difficulties. It should be also noted that in dilute
gas–solid particle flows, the proposed discretization equations for a do not need any special
treatment to ensure physically realistic solutions [46–48], while the linear combination ap-
proach suggested by Carver [34] does: the discretized source term of the proposed discretized
concentration equation is always equal to or greater than zero, as are all the coefficients in this
equation. This feature ensures that a]0. In addition, since a�1 in dilute gas–solid particle
flows, there is no need to incorporate any special procedures to ensure that aB1 during the
iterative solution procedure. However, for problems involving higher solid-phase concentra-
tions, an appropriately small time step was needed to ensure that aBaMX throughout the
solution procedure, as will be discussed later in Section 4.

3.5. O6erall solution algorithm

The discretization equations form two sets of coupled non-linear algebraic equations. In this
work, at each time step, a modified version of the iterative variable adjustment procedure
proposed by Saabas and Baliga [57] for single-phase flow, and recently applied to dilute
gas–solid particle flows by Masson and Baliga [46–48], was used to solve the mathematical
model:

1. Start with guessed or available velocities, fluid-phase pressure, solid-phase concentration,
and granular-temperature fields.

2. Calculate the fluid- and solid-phase diffusion coefficients, and the solid-phase pressure,
using the constitutive equations.

3. Calculate coefficients in the discretized unsteady momentum equations without including
contributions of the fluid-phase pressure-gradient terms.

4. Calculate the fluid-phase pseudo-velocities and pressure-gradient coefficients.
5. Calculate coefficients in the discretized fluid-phase pressure equations, and solve these

equations to obtain updated values of p f.
6. Add contributions of the fluid-phase pressure-gradient terms to the appropriate coeffi-

cients of the discretized z-momentum equations calculated in Step 3, and solve for u f and
u s, simultaneously.

7. Add contributions of the fluid-phase pressure-gradient terms to the appropriate coeffi-
cients of the discretized r-momentum equations calculated in Step 3, and solve for 6 f and
6 s, simultaneously.

8. Calculate coefficients of the discretized equations for a, and solve these equations to
obtain updated values of a.

9. Calculate e (=1−a).
10. Calculate coefficients in the discretized granular-temperature equations, and solve these

equations to obtain updated values of T.
11. Return to Step 2, and repeat until appropriate convergence criteria are satisfied.

A fully-implicit unsteady formulation [45] is used in this work. It should be noted here that
in the proposed method, the solution of steady-state problems is also obtained through the use
of a fully implicit unsteady formulation. This approach is related to the solution of the
coupled, non-linear, steady-state equations using iterative methods with underrelaxation [45].
In the two-fluid model considered in this work, there are two sets of governing equations, one
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related to the fluid phase and one to the solid phase. In the iterative solution of the steady
state equations, it is often necessary to prescribe different relaxation factors for each of the
two sets of discretization equations, in order to ensure convergence of the overall al-
gorithm. In the unsteady formulation, however, only the time step must be given. This time
step will naturally ensure a common evolution of the solution for each set of equations,
and this results in a robust numerical solution algorithm. In the choice of a suitable time
step, guidance is obtained from physical quantities such as the value of the particle relax-
ation time, which can be estimated using the expression t rel

s =4
3(r

sd2/m fCDRe s). Values of
the time step (Dt) less than t rel

s were used in this work.
In this work, the solution was considered to be converged when the non-dimensional

average, absolute, residue for each set of discretized equations was B10−10. If the un-
steady formulation is used only to facilitate the solution of steady-state problems, then it is
not necessary to obtain iterative convergence (Step 11) in this procedure at each time step.
Instead, Steps 2–10 are executed in sequence only once per time step, and the solution is
marched in time until steady-state conditions prevail.

In order to facilitate implementation and testing of the proposed CVFEM, structured
grids were used in this work: the nodes in the finite element mesh lie along non-orthogonal
lines that allow (I, J) indexing. Thus, in steps 5, 8 and 10, a line Gauss–Seidel algorithm
based on the tri-diagonal matrix algorithm [45] was used to solve the discretized equations
for p f, a and T, respectively. In steps 6 and 7, a line Gauss–Seidel method based on a
coupled-equation line solver [45] was used.

The momentum coupling source terms allow a direct accounting of the coupling between
the solid- and fluid-phase momentum equations in the above-mentioned solution algorithm.
The simultaneous solution of the solid- and fluid-phase momentum equations in Steps 6
and 7 is an important contributor to the robustness of the proposed algorithm. The un-
steady formulation also contributes significantly to the robustness of the overall solution
procedure by ensuring a similar evolution of the solutions of the fluid- and solid-phase sets
of equations.

The modified MAW scheme that is used to interpolate the solid-phase concentration
ensures positive coefficients in the discretized solid-phase concentration equation. Further-
more, the solid-phase concentration equation is based on the solid-phase continuity equa-
tion only: this yields homogeneous discretized equations everywhere in the domain of
interest except at points where the concentration is known. This results in a system of
equations that admit only positive values of a, which is a physical requirement of the
volume concentration. At high solid-phase concentrations, the discretized solid-phase con-
centration equations can, in principle, admit values larger than the maximum packing limit,
aMX. However, when the concentration is large, the solid-phase pressure appearing in the
momentum equation tends to disperse the solid particles and, therefore, reduce the solid-
phase volume concentration to values below aMX. However, in the context of the above-
mentioned iterative solution algorithm, the effects of the solid-phase pressure are not always
large enough to prevent a from reaching values equal to or larger than aMX. In such
situations, the use of a smaller time step has been found to be useful in alleviating this
difficulty.

The mathematical model given in Section 2 is applicable to values of the solid-phase
volume concentration in the range 05aBaMX. The overall numerical solution algorithm,
however, is not capable of handling regions where a is strictly equal to zero: in this work,
such regions are assumed to correspond to very small, but non-zero, values of a (]10−10).
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4. RESULTS AND DISCUSSION

The capabilities of the general granular-temperature model, presented in Section 2, are
demonstrated in this section. Simulations of gas–solid particle flows in a vertical pipe and an
annular shear cell apparatus are used as test problems, and the results are compared with those
of independent numerical and experimental investigations. In another test problem, a dilute-
concentration gas–solid particle flow in a duct with a sudden contraction is simulated using
the general granular-temperature model, and the results are compared with the solution of a
dilute-concentration model [48], in order to assess the capabilities of the general granular-tem-
perature model in the dilute concentration regime. Finally, an idealized laminar split-flow
inertial separator is analyzed using the granular-temperature model, allowing a demonstration
of the effects of particle–particle collisions on such a flow.

4.1. Vertical pipe flow

Solutions of gas–solid particle flows in a vertical pipe have been obtained by Sinclair and
Jackson [39]. Their mathematical model is quite similar to the one used in this paper. It is
based on the kinetic theory of gases, and the granular temperature is a dependent variable that
appears in their constitutive equations. However, they have only solved these equations in the
fully-developed regime, in which the problem becomes one-dimensional (radial). In the
fully-developed regime, Sinclair and Jackson [39] have studied a large variety of flows using a
numerical method based on an orthogonal collocation scheme.

In this section, gas–solid particle flows in a vertical pipe (see Figure 4) are investigated using
the proposed CVFEM, and the results are compared with the numerical results obtained by
Sinclair and Jackson [39]. As was stated before, the fully-developed problem is one-dimen-
sional. Here, however, this problem was solved using a two-dimensional formulation. This is
obviously not the most efficient formulation for this problem, but it allows a convenient check
on the two-dimensional capabilities of the proposed CVFEM. The problem is, therefore,
formulated over a pipe of finite length. Periodic boundary conditions were imposed at the ends
of the pipe; this approach will be referred to as the ‘periodic’ formulation.

Figure 4. Vertical pipe.
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The various physical properties used in the problem solved by Sinclair and Jackson [39],
which corresponds to a flow of mineral particles in air at 427°C, are

m f=3.65×10−5 Pa · s, r f=4.4×10−1 kg m−3, (51)

r s=2.5×103 kg m−3, aMX=0.65, 6t=1.29 m s−1, (52)

d=1.5×10−4 m, R=1.5×10−2 m, (53)

6t is the terminal velocity of fall of a single particle under gravity; R is the radius of the pipe;
and aMX is the solid-phase concentration at maximum packing.

With reference to the general mathematical model introduced in Section 2, some modifica-
tions and adaptations were required in order to obtain solutions which correspond to the
results of Sinclair and Jackson [39]. In particular, the following relations for the relative
viscosity, the drag coefficient, and g0 were used:

m r
f(a)= (1+2.5a+7.6a2)

�
1−

a

aMX

�
, (54)

CDRe s=
4
3

r sd2g
6tm

f(1−a)2 , (55)

g0=
1

1− (a/aMX)1/3 , (56)

where g is the gravitational acceleration (g=9.81 m s−2). Cs in Equation (20) was set equal to
zero, since in the formulation proposed by Sinclair and Jackson [39], the Reynolds stresses are
neglected. Furthermore, the constitutive equations proposed by Sinclair and Jackson [39] do
not include the effects of the drag force: their simplified constitutive equations can be obtained
from the ones proposed in this work by simply setting zD=0 in Equation (10) for gD, in
Equation (16) for m s*, and in Equation (17) for k s*.

The volumetric source terms in the fluid- and solid-phase momentum equations, and in the
solid-phase granular-temperature equation, were set equal to

Sz
f = −

dP
dz

, Sz
s = −ar sg, Sr

f =Sr
s=ST

s =0, (57)

where dP/dz is the overall fluid-phase reduced pressure gradient, in which the gravity term has
been absorbed. This overall pressure gradient is a parameter that is specified in the ‘periodic’
formulation. In the ‘periodic’ formulation, the volume flow rates of the fluid and solid phases
are not known a priori : they must be calculated. Therefore, an additional parameter must be
prescribed in order to obtain a desired, specific, value of the ratio of the fluid-phase and
solid-phase volume flow rates. This additional parameter can be one of the following: (i) the
average solid-phase concentration ā ; (ii) the fluid-phase volume flow rate; (iii) the solid-phase
volume flow rate; or (iv) the value of the solid-phase concentration at one point. In most of
the calculations presented in this section, the solid-phase volume flow rate was considered as
this additional parameter.

To complete the description of the problem, boundary conditions are required at the pipe
wall. Strictly, the fluid phase must satisfy the no-slip condition, and the solid phase could
undergo slip with frictional effects, at the pipe wall. Such wall boundary conditions would be
appropriate if the exact local-description model were used. However, as was mentioned earlier
in the paper, the exact local-description model is unsuitable for practical computations. In this
work, at the wall of the pipe, the volume-averaged velocities of both the fluid and the solid
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phase are assumed to be non-zero, and wall-friction effects are incorporated through the
prescription of appropriate shear stresses at the wall. Sinclair and Jackson [39] used the
following expression for solid-phase shear stress at the wall:

s rz
s = −


3Twpr sawg0

aMX

uv
s f %

6
, (58)

where f % is a specularity factor that is a measure of the fraction of collisions that transfer
lateral momentum to the wall. Following the approach proposed by Hui et al. [64], this
solid-phase wall shear stress expression was obtained from the rate of transfer of lateral
momentum from the particles to the wall. For specular particle–wall collisions (smooth wall),
f %=0, while for a rough wall, f %=1. In this problem, Sinclair and Jackson used f %=0.5.

For the fluid-phase wall shear stress, the following expression has been proposed by Sinclair
and Jackson [39]:

s rz
f = −

2m e
faMXTwuw

f

6 t
2awD

, (59)

where D is a linear measure of the control-volume at the wall (D=Vcv
1/3), and 6t is the terminal

velocity of fall of a single particle under the influence of gravity (see Equations (52) and (55)).
The boundary condition for the granular temperature at the wall is expressed in terms of a

fluctuating kinetic energy flux. Johnson and Jackson [43] have proposed an expression for this
flux, obtained by assuming that the inelastic particle–wall collisions are characterized by a
coefficient of restitution, ew. They then used an energy balance to show that the energy flux at
the wall is the sum of the rate of dissipation due to particle–wall inelastic collisions, gw, and
the energy generation by slip:

qr
s=gw+uw

s s rz
s , (60)

where

gw=

3Twpr sawg0

aMX

(1−ew
2 )Tw

4
. (61)

In their calculations, Sinclair and Jackson used ew=0.9.
In the ‘periodic’ formulation, special attention is needed to ensure that the solution will

correspond to the fully-developed regime. An additional equation can be derived from the
integration of the fully-developed solid-phase momentum equation in the r-direction:

p s(a, T)=constant=p s(Q s). (62)

This equation simply states that the solid-phase pressure is constant and, for the sake of
concreteness in this discussion, this constant is named p s(Q s) and an explanation for this
notation is given at the end of this paragraph. This equation relates the granular temperature
T, to the solid-phase volume concentration a, through the use of Equation (12). The granular
temperature is given by the solution of the fluctuating kinetic energy equation, and, therefore,
for a given constant p s(Q s), a can be calculated at any point. The constant p s(Q s) in Equation
(62) is prescribed so as to match the calculated solid-phase volume flow rate Q s, with that
computed by Sinclair and Jackson [39]: at each time step (or iteration), the solid-phase volume
flow rate was computed and compared with the desired value, in order to propose a correction
to the value of p s(Q s); and this procedure was continued until the desired solid-phase volume
flow rate was obtained. This process is highly implicit and the relationship between p s, a and
T (Equation (12)) is non-linear. Therefore, in most of the calculations, underrelaxation was
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Table II. Vertical pipe flow: comparative study

Proposed Rel. Dif.Sinclair and
Jackson [39]CVFEM (%)

Q0 f ā Q0 f ādP0 /dz̃ e Q0 s Q0 f ā

0.18 0.0−0.2 1.0 0.34 4.4 0.19 5.64.4
0.00.25 0.01.71.0 0.04 1.7 0.25

0.22 4.81.0 −0.15 0.79 0.23 4.50.83
0.25 4.51.0 −0.34 −0.023 0.26 −0.022 4.0

0.00.46 0.0−0.611.0 −0.62 −0.61 0.46
0.00.99 −2.10 −2.83 0.36 −2.83 N.A.

needed to compute a. The notation used to identify the constant in Equation (62) can now be
explained: it emphasizes that this constant is indirectly prescribed by the desired solid-phase
volume flow rate, Q s.

Six cases corresponding to six different solid-phase volume flow rates were simulated in this
test problem. Assuming the various physical properties given before as fixed, each case is
characterized by the non-dimensional overall pressure gradient dP0 /dz̃, the non-dimensional
solid-phase volume flow rate, Q0 s, and the coefficient of restitution, e, with

dP0
dz̃

=
1

r sg
dP
dz

, (63)

Q0 s=
1

R26t

&
0

R

au s2pr dr. (64)

Using a similar expression, the non-dimensional fluid-phase volume flow rate Q0 f, can be
calculated. Another quantity of interest that can be computed is the average solid-phase
concentration, ā. For each case, the values of Q0 f and ā were computed based on the solutions
generated by the proposed CVFEM and compared with the values obtained by Sinclair and
Jackson [39]. Table II gives the details of this comparison, including absolute values of the
relative difference between the proposed solution and the results of Sinclair and Jackson [39],
with the latter as the reference results. The results obtained with the CVFEM are in good
agreement with the solutions of Sinclair and Jackson [39]. A grid of 3×11 was used. Eleven
points were used in the r-direction in order to have a grid similar to the one used by Sinclair
and Jackson [39]. In the interest of economical computations, only three points were used in
the z-direction. This does not affect the accuracy of the results, since the solution is strictly
one-dimensional radial. However, it should be noted that for the first case given in Table II,
a grid of 11×11 was also used, and it yielded a converged solution identical to that obtained
with the 3×11 grid. In the first five cases, elastic particles are involved, and a time step of the
order of the particle relaxation time, t rel

s , was found to be adequate [49]. However, in the sixth
case, which corresponds to inelastic particles, in order to prevent the computed solid-phase
volume concentration from achieving values greater than the corresponding value at maximum
packing, it was necessary to use Dt5t rel

s /10.
As was stated before, Q0 s was used as the additional parameter in the ‘periodic’ formulation.

However, in order to obtain results comparable with those of Sinclair and Jackson [39], in the
third case, the centerline solid-phase concentration was used as the additional parameter, so
there is a small difference in the corresponding solid-phase volume flow rates: the proposed
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CVFEM predicted Q0 s= −0.15, while for the corresponding case in Sinclair and Jackson [39],
Q0 s= −0.16.

The detailed CVFEM results, consisting of the axial velocity, concentration, and granular-
temperature profiles, corresponding to the fifth and sixth cases described in Table II, are
presented in Figures 5 and 6. For the fifth case, a simulation with 21 points in the r-direction
was also undertaken, and the resulting solution was found to be so close to the 11-point
solution that the respective curves presented on plots similar to Figure 5 were
indistinguishable.

The first five cases of this problem correspond to idealized conditions where the coefficient
of restitution for particle–particle collisions is set equal to unity (e=1) and the effects of the
drag force in the constitutive equations are assumed negligible (this is obtained by setting
zD=0 in Equation (10) for gD, in Equation (16) for m s*, and in Equation (17) for k s*). For
these idealized conditions, using Equations (1)–(18) and the specializations given in Table I for
the granular temperature T, it can be established that at the centerline of the pipe, r/R=0, T
can take on any finite value, and (T/(r=0. This feature is clearly seen in the plot of T/6 t

2

Figure 5. Vertical pipe flow: dP0 /dz̃= −0.2; e=1.0; Q0 s= −0.62.
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Figure 6. Vertical pipe flow: dP0 /dz̃= −0.2; e=0.99; Q0 s= −2.10.

versus r/R in Figure 5, which corresponds to Case 5. However, when eB1 or zD"0, the
physically realistic condition of T=0 is achieved at the centerline, r/R=0. This feature is
evident in the T/6 t

2 versus r/R plot in Figure 6, which corresponds to Case 6 where e=0.99
(see Table II).

In all the simulations, there is a region of high concentration near the wall, because the
particle–wall inelastic collisions have the effect of accumulating particles in the vicinity of the
wall. In the case of inelastic particle–particle collisions (Case 6, Figure 6), the concentration
profile presents a different behavior than the other cases: the maximum concentration is at the
center of the pipe. This migration of the particles to the center of the pipe, which is ascribed
to shear-induced particle migration in the literature [65], is in qualitative agreement with
experiments [66] and Stokesian dynamics simulations [44]. In these studies, a flattening of the
velocity profiles in the vicinity of the centerline was also observed. Again, such a flattening
behavior can be noted in the CVFEM solution corresponding to the case of particle–particle
inelastic collisions (Figure 6(a)). The shape of the velocity profiles and the direction of the
particle migration confirm that the migration goes from high to low shear-rate regions [65].
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The physical mechanism that explains such a migration is still not well understood [44].
Leighton and Acrivos [65] suggested that the migration is due to the roughness of the particles;
Nott and Brady [44] explained this behavior by the chaotic motion that takes place in a system
of more than three particles. Based on the results of this section, all that can be said for certain
is that inelastic collisions between the particles clearly induce particle migration to the center
of the pipe.

4.2. Flow in an annular shear cell apparatus

Total normal and shear stresses in gas–solid particle flows have been obtained experimen-
tally by Savage and Sayed [67], and Hanes and Inman [68], using an annular shear cell
apparatus. These experiments provide data that can be used to examine the various mathemat-
ical descriptions of the fluid- and solid-phase stress tensors. Savage and Sayed [67] used
polystyrene beads, glass beads, and crushed walnut in air. Hanes and Inman [68] used glass
beads in air and water. These experiments can be described by the simple plane shearing model
of Figure 7 if the centrifugal effects are negligible. In the experiments of Savage and Sayed, for
example, the centrifugal effects modify the solid-phase stresses by only 1–2% [67]. Using this
assumption, Johnson and Jackson [43] have solved this problem with the simple plane shearing
model. The stress model used in their analysis includes both collisional and frictional
contributions. The frictional contribution appears at dense concentrations, close to the
maximum packing of the granular material, when particles interact with each other through
long-term direct contact. Their evaluation of the frictional contribution included an empirical
constant which was calculated to fit the experimental data. Another adjustable parameter was
also included in their collisional contribution. Only comparisons with the experimental data of
Savage and Sayed [67] are presented in the work of Johnson and Jackson [43].

In this section, numerical solutions of the simple plane shearing model obtained using the
proposed CVFEM are compared with some of the experimental data of Savage and Sayed [67]
and Hanes and Inman [68]. As stated earlier, the frictional contribution becomes significant
only when the concentration is close to the maximum packing of the granular material. At
lower concentrations, frictional contribution can also become important when the shearing of
the material is very low. In this section, only the relatively high shearing experiments at
concentrations far from the close-packing concentration will be presented. No comparison
with the numerical solutions of Johnson and Jackson [43] will be presented, since the
mathematical model used in this work does not include any frictional contribution to the
solid-phase stress tensor.

Figure 7. Plane shearing model.
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The plane shearing problem solved in this section consists of a fixed top wall and a moving
bottom wall separated by a distance H, as shown in Figure 7. The velocity of the bottom wall
is denoted as uw and is in the positive x-direction. The bottom wall is located at y=0, and the
top wall is located at y=H. The experiments of Savage and Sayed [67], and Hanes and Inman
[68] were designed to give the normal and shear stresses at the top wall.

Strictly, this problem is one-dimensional, but in order to test the proposed two-dimensional
formulation, a finite length of the plane shearing cell is modelled along with periodic boundary
conditions at the inlet and outlet planes of the calculation domain.

The experiments of Savage and Sayed [67], and Hanes and Inman [68] were constructed to
minimize the slip of the solid phase at the top and bottom walls of the annular shearing cell:
Savage and Sayed used sand paper, while Hanes and Inman cemented a layer of solid particles
on each wall. The type of surface roughness used by Hanes and Inman ensures a perfect
no-slip condition of the solid phase. With the sand paper, a slip can exist, and, therefore, the
slip boundary conditions proposed by Sinclair and Jackson [39] were used. Particle–wall
collisions were assumed inelastic. In this work, the granular-temperature gradients at the walls
were prescribed following the analysis proposed by Sinclair and Jackson [39].

As was the case in the ‘periodic’ formulation of the flow in a vertical pipe, an additional
equation is needed to converge to the desired fully-developed solution. This equation was
obtained by the integration of the solid-phase momentum equation in the y-direction, and is
used to select an appropriate solid-phase average concentration, ā :

p s(a, T)=
�

p s(āEXP)− (r s−r f)g
&

0

y

a dy
n

, (65)

where p s(āEXP) is a constant which has to be prescribed in order to ensure that at convergence,
the average volume concentration calculated by the CVFEM corresponds to the experimental
one after each time step (or iteration); the average volume concentration of the CVFEM
solution, āCVFEM, was computed. Then, p s(āEXP) was modified so as to meet the requirement
that āCVFEM should be equal to the average volume concentration of the experiment, āEXP. The
average concentration was computed using the integrated solid-phase y-momentum equation
(Equation (65)). This process is highly implicit, and it was necessary to underrelax a during the
solution process in order to ensure convergence.

The geometrical and physical parameters of the various simulations presented in this section
are given in Table III. All the simulations were performed for the case of glass particles in air.
To simulate the experiments of Hanes and Inman [68], the coefficients of restitution, e and ew,
were set to 0.95. This is the value of the coefficient of restitution of glass particles, e, in a
vacuum [42]. For the simulation corresponding to the experiments of Savage and Sayed [67],
smaller values of e and ew were used. The smaller value of ew is justified due to the type of wall
surfaces used in their experiment, namely, sandpapered wall. For such a surface, Johnson and
Jackson [43] have suggested ew=0.50 and f %=0.60. The use of a smaller e, however, needs
more justifications. It is assumed that the sandpapered surfaces scratched the glass particles.
Lun and Savage [69] showed that rough particles tend to have more rotational energy than
smooth particles, and this, in turn, leads to lower levels of stresses. In the mathematical model
proposed in this work, the particles are assumed to be smooth and, therefore, no rotational
energy is included in the analysis. A parametric study of some of the various parameters
appearing in the proposed theory was undertaken in order to choose appropriate values of e.

The results of the parametric study are presented in Figure 8 for a case corresponding to an
experiment of Savage and Sayed [67]. Figure 8(a) illustrates the effect of the coefficient of

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 1441–1479 (1998)



TWO-FLUID MODEL OF GAS–SOLID PARTICLE FLOWS 1465

Table III. Flow in annular shear cell: various parameters

e ewr s H f %Experiment ā d
(mm)(kg m−3)(mm)

11.610 0.89 0.50Savage and Sayed [67] 0.477 1.80 0.602970
0.600.500.8910.92029701.800.507

13.717 0.95 0.95Hanes and Inman [68] 0.440 –1.85 2780
13.121 0.95 0.950.460 –1.85 2780

–0.950.9512.31727801.850.490

restitution of the particle–particle collisions, e, on the non-dimensionalized total shear and
normal stresses at the top wall:

t s*=
ts

r sgd
, tn*=

tn

r sgd
, (66)

where tn and ts are the sum of the solid- and fluid-phase stresses applied normally and
tangentially to the top wall, respectively. Only the results with e\0.8 are presented, since the

Figure 8. Parametric study of flow in annular shear cell: ā=0.477; (d/g)1/2(uw/H)=2.0.
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theory is only applicable for slightly inelastic particles. As is clearly seen, there is a significant
decrease of the shear and normal stresses as the coefficient of restitution, e, decreases. A
variation of 70% is noted between the computed normal stresses corresponding to e=0.95 and
0.80: the corresponding variation of the shear stress is 50%. This behavior is associated with
the dissipation of fluctuating energy by inelastic collisions, which results in a lower level of
granular temperature and, therefore, in smaller values of the solid-phase stresses. These
important variations of the stresses illustrate that physically meaningful simulations can be
realized only when a good evaluation of e is available. In order to obtain a comparable level
of stresses between the experiments of Savage and Sayed [67] with rough particles and the
smooth-particle simulations performed with the proposed CVFEM, a smaller value of e
(=0.89) than the one corresponding to glass particles in a vacuum (e=0.95) was used in the
CVFEM simulations.

A parametric study was also undertaken to quantify the effects of ew and f % (see Figure
8(b,c)). The influence of ew is similar to that of e, but with much smaller variations: between
ew=1.0 and 0.0, a variation of 40% is noted on the normal stress and 20% on the shear stress.
Furthermore, most of the variation is noted in the range 0.8BewB1.0. The effect of the
specularity coefficient f % is illustrated in Figure 8(c): there is an increase of the shear and
normal stresses as f % increases. Low values of f % correspond to smooth walls, while large
values correspond to rough walls. Rough walls produce solid-phase fluctuating kinetic energy
and, therefore, the solid-phase stresses increase. Another parameter which significantly influ-
ences the level of stress is the radial distribution function g0. In the present simulations, the
radial distribution function was taken as

g0=
1

1− (a/aMX)1/3, (67)

with aMX=0.65. The radial distribution function proposed by Lun [42] (Equation (18)),
produces a decrease of 20% in the stress level.

Figure 9 presents fluid- and solid-phase velocity, solid-phase volume concentration, and
granular-temperature profiles for the same problem as that corresponding to Figure 8, but
with specific values of e, ew and f %: e=0.89, ew=0.50 and f %=0.6. The fluid and solid phases
are in dynamic equilibrium in almost the entire domain: only slight differences in velocity are
noted in regions near the walls. It is also seen that the velocity profiles are not linear, as is the
case in the single-phase Couette flow. The concentration profile exhibits an accumulation of
particles near both the bottom and top walls. The increase in concentration at the bottom is
explained by the action of gravity which tends to accumulate particles at the bottom of the
shear cell. The migration of particles to the region near the top wall is induced by the inelastic
wall–particle collisions. The granular-temperature profile shows strong increases of T near the
walls, which illustrates that the production of solid-phase fluctuating energy by rough walls is
more important than the dissipation by inelastic particle–wall collisions.

Comparisons of the experimental normal and shear stresses with those obtained using the
proposed mathematical model are presented in Figures 10 and 11. Figure 10 presents a
comparison with the results of Savage and Sayed [67] for glass particles of 1.80 mm diameter,
and the results in Figure 11 show a comparison with the experimental results of Hanes and
Inman [68] for glass particles of 1.85 mm diameter. The experimental and numerical results
show fair agreement, with the shear stresses showing a better agreement (see Figure 10(a) and
Figure 11(a)) than the normal stresses (see Figure 10(b) and 11(b)). Furthermore, the overall
trends, in terms of variation with the apparent shear rate, (d/g)1/2(uw/H), and average
concentration, ā, are well predicted.
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Figure 9. Velocity, concentration and temperature profiles for flow in annular shear cell: ā=0.477; (d/g)1/2(uw/H)=
2.0.

In conclusion, it should be noted that the experiments of Savage and Sayed [67] and those
of Hanes and Inman [68] were done with similar particles, however, the stresses measured by
the former are much smaller that those obtained by the latter. This discrepancy is attributed
to the different types of wall roughness used in each experiment [68]. As was stated earlier,
Hanes and Inman used a cemented layer of particles, and, therefore, ensured the applicability
of the non-slip condition at the wall. Savage and Sayed used sandpaper at the wall, which only
reduces the slip, and transforms the smooth particles into rough particles.

4.3. Flow in a channel with a restriction

Dilute gas–solid particle flows in a channel with a restriction has been analyzed recently
using a dilute-concentration model [48]. A schematic illustration of this problem is given in
Figure 12. Here, the granular-temperature model is used to investigate this problem. The use
of this general mathematical model for a gas–solid particle flow of dilute concentration is
computationally inefficient, since an additional equation, namely the fluctuating kinetic energy
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Figure 10. Shear and normal stresses for flow in annular shear cell: e=0.89; ew=0.50; f %=0.60.
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Figure 11. Shear and normal stresses for flow in annular shear cell: e=0 95; ew=0.95; no-slip.
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Figure 12. Geometry of the channel with a restriction.

equation, needs to be solved. However, this test provides an assessment of the validity of the
general mathematical model in the simulation of gas–solid particle flows of dilute concentra-
tion. It is necessary to demonstrate this feature of the general mathematical model, before it
can be used with confidence in the simulation of gas–solid particle flows that involve a wide
range of the solid-phase volume concentration.

The boundary conditions are the same as those used in the corresponding problem described
in Reference [48]: (i) uniform inlet profile for a ; (ii) identical Poiseuille inlet velocity profiles
for both phases; (iii) outflow treatment at the outlet plane; (iv) no-slip condition at the walls
for the fluid phase; and (iv) slip condition at the walls for the solid phase. It should be noted
that these boundary conditions are equivalent to stating that the wall is smooth, or f %=0. In
addition, the boundary conditions and parameters related to the granular temperature are: (i)
zero granular temperature at the inlet plane; (ii) inelastic particle–wall collisions, with ew=0.9;
and (iii) outflow treatment at the outlet planes. The coefficient of restitution for particle–par-
ticle collisions, e, is assumed to be 0.9.

The values of the various parameters in this problem are presented in Table IV. Here, the
Reynolds number is defined as Re=r fu cl

f L/m f, where u cl
f is the fluid-phase centerline velocity

component in the axial direction at the inlet plane; the Stokes number is Sk=t s/t f, with
t s=4/3(r sd2/m fCDRe s), CDRe s=24+4(Re s)2/3 and t f=L/u cl

f ; and g=r s/r f. Figures 13–16
present the solutions obtained with the dilute concentration model [48] and the general
granular-temperature model. All of these results were obtained using a 73×37 grid. At a
Stokes number of Sk=10−2, the solutions are in very good agreement for both ain=10−3

and 5×10−3. The results for Sk=10−1 and ain=5×10−3 also compare very well. These
successful comparisons demonstrate the validity of the general mathematical model in the
dilute concentration regime. At Sk=10−1 and ain=5×10−3, there is a minor discrepancy in
the results: the fluid-phase pressure drop (Figure 15), predicted by the general model is slightly
larger than that obtained with the dilute concentration model. This may be due to the

Table IV. Values of parameters for flow in a channel with a restriction

Re ain gSk

10−2 10−3100 1000
5×10−3 1000100 10−2

10−1 5×10−3 1000100
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Figure 13. Flow in a channel with a restriction: variation of fluid-phase velocity along the centerline.

increasing effects of the particle–particle collisions. For this relatively large value of the Stokes
number, the solid phase is not necessarily in dynamic equilibrium with the fluid phase:
therefore, the solid-phase concentration could build up in certain regions, such as near the
walls, and the effects of the particle–particle collisions could become significant.

4.4. Split-flow inertial separator

In an earlier paper [48], dilute gas–solid particle flows in an idealized, laminar split-flow
inertial separator were analyzed using a dilute-concentration mathematical model. A schematic
illustration of this problem is given in Figure 17. The ratio of the inlet external radius, Re, to
the inlet internal radius, Ri, is equal to 2. The other geometric parameters may be obtained
from Figure 17, since this figure is drawn to scale. In this paper, the general granular-temper-
ature model is used to investigate this problem. The separator contains regions of low and high
volume concentration of the solid phase. At the inlet and in the main duct, the solid-phase
concentration is relatively low. However, when the separator is operating at high efficiency, the
solid-phase concentration in the bypass duct may reach values at which the effects of the

Figure 14. Flow in a channel with a restriction: variation of solid-phase velocity along the centerline.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 1441–1479 (1998)



C. MASSON AND B.R. BALIGA1472

Figure 15. Flow in a channel with a restriction: variation of fluid-phase pressure along the centerline.

Figure 16. Flow in a channel with a restriction: variation of solid-phase concentration along the centerline.

particle–particle collisions are no longer negligible. The effects of such collisions in the
split-flow inertial separator can be illustrated by a comparison between solutions obtained with
the dilute-concentration model [48] and the general granular-temperature model presented in
this work.

Figure 17. Geometry of the separator.
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The following boundary conditions were used with this model:

� Fluid phase
– Prescribed uniform axial velocity and zero radial velocity at the inlet.
– Outflow treatment [45] at the outlet planes for all the fluid-phase dependent variables.
– No-slip condition at the wall.

� Solid phase
– Prescribed concentration, uniform axial velocity, zero radial velocity, and zero granular

temperature at the inlet plane.
– Outflow treatment [45] at the outlet planes for all the solid-phase dependent variables.
– Inelastic particle–wall collisions on a smooth wall: ew=0.9 and f %=0.

The assumption of smooth wall leads to solid-phase slip condition at the wall (zero shear
stress): this assumption also ensures that the boundary conditions of the general model are
similar to the ones of the dilute-concentration model [48]. The coefficient of restitution for
particle–particle collisions, e, is assumed to be 0.9.

The non-dimensional parameters that govern the fluid flow in this problem are the Reynolds
number, Re, based on the inlet hydraulic diameter (DH=2(Re−Ri)) and the prescribed
uniform axial velocity, u in

f , of the fluid phase at the inlet; the Stokes number, Sk=t s/t f with
t s=4

3(r
sd2/m fCDRe s), CDRe s=24+18

5 (Re s)0.687, and t f=DH/u in
f ; g=r s/r f, the ratio of the

densities of the solid and fluid phases; the inlet volume concentration of the solid phase, ain;
and the bypass ratio, b. The bypass ratio, b, defined as the ratio of the fluid-phase mass flow
rate through the bypass duct to the fluid-phase inlet mass flow rate, is controlled by the
pressure difference between the main-duct outlet plane and the bypass outlet plane. All the
simulations in this comparative study were done with Re=200, b=20%, g=1000, and
ain=10−3. These results were obtained using the grid illustrated in Figure 17. The influence of
the Stokes number was investigated in the range 10−35Sk510−1.

Figure 18(a) gives the variation of the separator efficiency, hef, as a function of the Stokes
number, Sk. The separator efficiency hef indicates, for a given bypass ratio, b, the effectiveness
of a given separator. This efficiency is defined as the ratio of the solid-phase mass flow rate
through the bypass duct to the solid-phase inlet mass flow rate. The solid line corresponds to
the solution of a dilute concentration model [48] and the dashed line represents the solution of
the granular-temperature model. At large Sk, the dilute-concentration model overestimates the
separator efficiency, and the difference between the two models reaches a maximum value of
52%. Whenever there is a build up in the concentration of particles, the collisions tend to
spread out the particles: thus the effect of collisions is to make the solid-phase concentration
more uniform, and decrease the separator efficiency.

The variation of the non-dimensionalized fluid-phase static-pressure drop in the main duct,
DpM

f* , with Stokes number, Sk, is presented in Figure 18(b). DpM
f* is defined as

DpM
f* =

p in,c
f −pout,M

f

0.5r f(u in
f )2 , (68)

where p in,c
f is the static pressure at the central node in the inlet plane of the separator; pout,M

f

is the static pressure at the outlet plane of the main duct; r f is the density of the fluid phase;
and u in

f is the prescribed uniform velocity of the fluid phase at the inlet plane of the separator.
The results obtained with the dilute-concentration and general models show similar behavior.
DpM

f* asymptotes to the homogeneous-mixture solution as Sk decreases, at low values of Sk. A
decrease of DpM

f* with increasing Sk, at large Sk, is also evident. At an intermediate value of
Sk, there is a maximum. However, this maximum does not appear at the same Sk for each
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Figure 18. Results pertaining to b=20%, g=103 and ain=10−3: (a) separator efficiency; (b) static-pressure drop in
the main duct; (c) static-pressure drop in the bypass duct.

model: the granular-temperature model predicts the maximum at a larger Sk than the
corresponding value for the dilute concentration model. Furthermore, DpM

f* estimated with the
granular-temperature model is always greater than that predicted using the dilute-concentra-
tion model: particle–particle collisions lead to a viscosity of the solid phase and the associated
stresses, and, therefore, a larger fluid-phase pressure drop is needed to drive the same mass of
mixture. The increase in pressure drop is more pronounced at high Sk. This is to be expected
since the relaxation time of a particle increases with increasing Sk, while the frequency of
collisions is essentially constant for a given inlet concentration. It is also seen that the effects
of the collisions are much stronger on the non-dimensionalized fluid-phase static-pressure drop
in the bypass duct, DpBY

f* , (see Figure 18(c)). In this figure, DpBY
f* is defined as

DpBY
f* =

p in,c
f −pout,BY

f

0.5r f(u in
f )2 , (69)
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where pout,BY
f is the static pressure at the outlet plane of the bypass duct. With the

granular-temperature model, as Sk increases, DpBY
f* does not decrease, as predicted by the

dilute-concentration model, but increases due to the increasing effects of the particle–particle
collisions. Furthermore, this increase is amplified by the combined effects of the increasing Sk
and increasing solid-phase concentration (associated with the increase in the efficiency). Again,
at low Sk, the results of both models asymptote to the homogeneous-mixture solution.

These results show that even at relatively low values of inlet concentrations, ain, the effects
of the collisions may not be negligible. This is especially true at large values of the Stokes
number and in regions where there is a build up of solid-phase concentration, such as in the
bypass duct. These results also clearly illustrate that a mathematical model that includes
particle–particle collisions is essential for accurate solutions of gas–solid particle flow prob-
lems involving a wide range of solid-phase concentrations. Finally, the results of this problem
demonstrate that the proposed CVFEM can be successfully used to simulate gas–solid particle
flows in complex geometries, over a wide range of the solid-phase concentration.

5. CONCLUSION

The main contributions of this work are the presentation of a granular-temperature model and
the development of a CVFEM for the solution of dense gas–solid particle flows in irregular-
shaped geometries. The granular-temperature model is a simplified version of a model
proposed by Lun and Savage [5,42]. The mathematical model and the proposed CVFEM have
been applied to three test problems and one demonstration problem. The results are quite
encouraging.
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APPENDIX A. NOMENCLATURE

coefficients in the algebraic, discretized, equation for p f [ms]aci
p, acnb

p , bp

aci
T, acnb

T , bT coefficients in the algebraic, discretized, granular-temperature equation [kg
s−1]

aci
u, acnb

u , bu coefficients in the algebraic, discretized, z-momentum equation [kg m−1]
coefficients in the algebraic, discretized, r-momentum equation [kg m−1]aci

6, acnb
6 , b 6

aci
a, acnb

a , ba coefficients in the algebraic, discretized, equation for a [kg s−1]
coefficients in the interpolation function for fA, B, C

CD particle drag coefficient (Equation (18))
constant appearing in the evaluation of the Reynolds stress (Equation (20))Cs

[s1/2]
d particle diameter [m]
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d f, e f, f f coefficients in the interpolation function for the fluid-phase pressure
d s, e s, f s coefficients in the interpolation function for the solid-phase pressure
duf pressure-gradient coefficient for u [m3 s kg−1]

pressure-gradient coefficient for 6 [m3 s kg−1]d 6f

e coefficient of restitution for particle–particle collisions
ew coefficient of restitution for particle–wall collisions
f+, f− mass-weighted functions (Equations (33)–(35))
g gravitational acceleration (=9.81 m s−2)
g0 equilibrium radial distribution function (Equation (18))

units vectors in the z- and r-direction, respectivelyib , jb
Jb combined convection–diffusion flux of f (Equation (24))
Jb D diffusion flux of f (Equation (25))
Jb C convection flux of f (Equation (26))

diffusion coefficient related to granular-temperature gradient (EquationkT
s

(14)) [N s m−2]
ka

s diffusion coefficient related to solid-phase volume concentration gradient
(Equation (15)) [N s−1]

m; mass flow rate [kg s−1]
material mass flow rate [kg s−1]M:

n� unit normal vector
p pressure, [Pa]
Q s, Q f volume flow rates of the solid and fluid phases, respectively [m3 s−1]
Q0 s, Q0 f non-dimensional volume flow rates of the solid and fluid phases,

respectively
r radial co-ordinate in the cylindrical-polar co-ordinate system, [m]
Re Reynolds number
Re s particle Reynolds number (=r fd �Vb s−Vb f�/m f)
s length [m]

Stokes numberSk
S volumetric source term for f

t time [s]
T granular temperature [m2 s−2]
u velocity component in the z-direction [m s−1]
ûi z-component of the pseudo-velocity at node i [m s−1]
6 velocity component in the r-direction [m s−1]
6̂i r-component of the pseudo-velocity at node i [m s−1]

terminal velocity of fall of a single particle under gravity [m s−1]6t
V volume [m3]
Wp solid-phase pressure work source term (Equation (8)) [W m−3]
x local co-ordinate in the direction of z (Figure 3(a)) [m]

local co-ordinate in the direction of r (Figure 3(a)) [m]y
axial co-ordinate in the cylindrical-polar co-ordinate system [m]z

Greek Symbols

a solid-phase volume concentration
b volume concentration in general governing equation (Equation (1))
D linear measure of the grid size [m]
Dt time step [s]
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fluid-phase volume concentratione

zD specific fluid friction coefficient (Equation (9)) [kg m s−3]
h coefficient related to e (Equation (18))

density ratio (=r s/r f)g

solid-phase fluctuating kinetic energy dissipation due to inelastic collisionsgc

(Equation (9)) [W m−3]
gB solid-phase fluctuating kinetic energy transfer term (Equation (10))

[W m−3]
gD solid-phase fluctuating kinetic energy dissipation due to drag (Equation

(10)) [W m−3]
bulk diffusion coefficient for f (Equations (2)–(4); Table I)Gb

Ge effective diffusion coefficient for f (Equations (1)–(4); Table I)
m f dynamic viscosity of the fluid phase [Ns m−2]

effective viscosity (Equations (13) and (19)) [Ns m−2]me

mb bulk viscosity (Equations (12) and (20)) [Ns m−2]
fluid-phase apparent viscosity (Equation (19)) [Ns m−2]ma

f

m r
f fluid-phase relati6e viscosity (Equations (19) and (22))

f dependent variable in the general governing equation (Equation (1))
f % specularity factor (Equation (58))

dissipation function (Equation (11)) [W m−3]Fs

p 3.1415926
r mass density in the general governing equation (Equation (1)) [kg m−3]

Superscripts

pertaining to the fluid phasef
int pertaining to the fluid–solid interface

pertaining to the mass-flow related velocitym
s pertaining to the solid phase
* pertaining to the previous time step

Subscripts

cv pertaining to the control volume
pertaining to the elementele

MX related to maximum packing condition
o pertaining to the centroid of the element

pertaining to the r-component equation or to point r (Figure 3)r
pertaining to points s and t, respectively (Figure 3)s, t
pertaining to values at the wallw

z pertaining to the z-component equation
f pertaining to the dependent variable
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